Depth of Initial Ideals of Normal Edge Rings
نویسندگان
چکیده
منابع مشابه
Depth of Initial Ideals of Normal Edge Rings
Let G be a finite graph on the vertex set [d] = {1, . . . , d} with the edges e1, . . . , en and K[t] = K[t1, . . . , td] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ringK[G] which is generated by those monomials t = titj such that e = {i, j} is an edge of G. Let K[x] = K[x1, . . . , xn] be the polynomial ring in n variables over K and define the surje...
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملNormal Ideals of Graded Rings
For a graded domain R = k[X0, ...,Xm]/J over an arbitrary domain k, it is shown that the ideal generated by elements of degree ≥ mA, where A is the least common multiple of the weights of the Xi, is a normal ideal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2014
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2012.760565